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ABSTRACT 

Let Pk denote the number of k-gonal faces of a simple 3-polytope. Euler's 
relation leads to an equation between the pk's which does not involve P6. Eber- 
hard proved in 1891 that every sequence of non-negative integers (P3, P4,...) 
satisfying this equation corresponds to a polytope for suitable values of P6. 
In the present paper it is established that if P3 = P4 ~ 0 then every value 
P6 >= 8 is suitable. 

1. Introduction. Let the number of  k-gonal faces of  a convex polytope P in 
3-dimensional Euclidean space E 3 be denoted by p~(P). Since Euler, it has been 
known that if P is a simple 3-polytope (that is, if  each vertex of P is incident to 

only three edges), then 

(*) 2~ (6 - k)pk(P ) = 12. 
k_>3 

In 1890, the blind geometer Victor Eberhard proved [3] the following converse 
of  the above statement: 

I f  Pa, P,, Ps, PT, P8, "", P, are non-negative integers EBERHARD'S THEOREM. 
such that 

Z (6 - k)Pk = 12, 
k>_3 

then there exists a simple 3-polytope P such that Pk(P) = pkfor all k >= 3, k # 6. 

Neither Euler's equation (*), nor Eberhard's theorem, give any information 

concerning p6(P). It is well known (see, for example, [4], [3], [6], [5, Chapter 13]) 

that if the values of pk(P) for 6 # k > 3 are given, p6(P) may take infinitely many 
different values; in general, however, not all values of P6 are possible for a given 

sequence Pa, P4, Ps, P7, "", P,- For  example, if  Pa = 3, iv, = P5 = 1, Pk = 0 
for k > 7, then P6 --> 3 [4, Theorem 26] and is odd [5, Theorem 13.4.1]. 

The known proofs of Eberhard's theorem yield polytopes P with values of 

p6(P) very large compared to, say, Zk>__7 Pk(P) (see [4], ['5, Section 13.3]). An 
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explanation for this may be found in a recent result of Barnette El], which may 
be formulated as follows: 

BARNETTE'S THEOREM. Every simple 3-polytope P satisfies 

p6(P) > _ g P4(P) - g Ps(P) + ~, - pk(P). 
k_~7 

In particular, for simple 3-polytopes satisfying p4(P) = ps(P) = 0, the number 
of hexagons is necessarily rather large. 

The aim of the present paper is to show that if  only simple 3-polytopes with 
Pa = P4 = 0 are considered, then P6 may be kept uniformly small and all except 
possibly few values of P6 are possible. More precisely, we have 

THEOREM 1. Let Ps, P6, P7,'",Pn be non-negative integers such that 

n 

(**) P 5 = 1 2 +  ~ ( k - - 6 ) p k  
k ~ 7  

and P6 > 8. 

Then there exists a simple 3-polytope P such that pk(P) = pkfor all k > 5. 

The main part of the paper is devoted to a proof of the weaker 

THEOREM 2. Let Ps, P7, Pa,'",Pn be non-negative integers satisfying (**). 
Then there exists a simple 3-polytope P such that pk(P)=PkfOr k=5 ,  7, 8, ...,n, 
pa(P) = p4(P) = O, and p6(P) < 8. 

We shall first prove Theorem 2, and then indicate how Theorem 1 may be 
established by performing minor modifications on the constructions used to prove 
Theorem 2. A number of additional results, and some open problems and con- 
jectures are discussed in the last section. 

Our task is greatly simplified by the following theorem of Steinitz (see [8], [9], 
[5, Section 13.1 ], [2]): 

ST~INITZ'S THEOREM. I f  G is a 3-connected graph imbedded in the 2-sphere 
S 2, there exists a convex 3-polytope P such that the boundary complex of P is 
isomorphic to the cell complex defined on S2by G. 

This result enables us to prove Theorems 1 and 2 by constructing, for a given 
sequence Ps, "", Pn satisfying (**), a 3-valent, 3-connected planar graph G such 
that the numbers pk(G) of k-gonal "countries" defined by G satisfy pa(G) = p4(G) 
-- O, pk(G) = Pk for k = 5, 7, 8, ..., n, and p6(G) =< 8 or else p6(G) = P6. 

2. Proof of Theorem 2. For a given sequence Ps, PT, "", Pn satisfying the 
assumption of Theorem 2 we shall construct, in a number of stages, a graph G as 
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described above. We shall first explain some of the main subconstructions, then 
see how they may be used to obtain G in general; in the end we shall deal with 
some exceptional cases, not covered by the main argument. 

(1) The "caterpillar". Let nl, "", nr be integers not smaller than 7, and let 
r > 4. We construct the (nl, "", nr)-caterpillar by taking an nl-gon, -.., an nrgon, 
and by joining them, together with two hexagons and 6 + E~= t (hi - 6) pentagons, 
in the fashion indicated in Figure 1. 

! 
Fig. 1 

One important feature of any caterpillar is its being a topological disc, such that 
the vertices on its boundary are, alternatingly, 2-valent and 3-valent. It is convenient 
to think of a caterpillar as a "toothed" disc the "valleys" on its rim corre- 
sponding to the 3-valent vertices. Itis easy to see that each caterpillar is 3-connected 
between any two of its 3-valent vertices. 

The caterpillars used in the main part of the proof will satisfy nl > 7, nr > 7, 
n 2 => 12, nr_ i > 12, ni > 11 for 3 < i < r - 2. This will guarantee that each 
chain of contiguous pentagons along the rim of the caterpillar contains at least 
five pentagons. 

(2) The "welding". If we imbed a caterpillar in a 2-sphere, its complement is 
again a "toothed disc". (See Figure 2, in which a caterpillar with r = 9 is shown. 
By "pinching" that disc we may "weld together" almost all of the boundary of 
the caterpillar, as indicated in Figure 3. In the process we 

(i) cover the whole sphere except for the two small topological discs shaded in 
Figure 3b; 

(ii) change four of the caterpillar's pentagons into hexagons. This naturally 
implies that the caterpillar's polygons in the appropriate positions (separated 
by five valleys) had to be pentagons; thus it imposes a restriction on the freedom 
of preassigning the location of "pinching". However, since each chain of pentagons 
on the rim of the caterpillar contains at least five pentagons, it is easily checked 
that out of any five consecutive pinching positions at least one will have pentagons 
at the required places, and hence be possible. 

(3) The "'plugs". Each of the two residual discs, remaining after the welding 
of the rim of the caterpillar to itself by (2), is an 11-gon with five 2-valent vertices. 
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Fig. 2 

It may be filled in by a "plug" consisting of 5 pentagons and one hexagon, as 
as shown in Figure 4. 

(4) Local insertions. If a planar graph contains the configuration W of 4 
pentagons shown in Figure 5a, it is possible to introduce two k-gons, k > 7, into 
the graph without distrubing the graph outside the configuration. Moreover, 

Fig. 3a 
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Fig. 3b 

6 6 

Fig. 4 

Israel J. Math., 

this may be accomplished in such a fashion that the resulting configuration contains 
another copy of configuration W. The change is indicated (for k = 9) in Figure 5b, 
in which the new configuration W is shaded. 

Since the configuration W is self-reproducing under such changes, we see that 
we may use it to insert an arbitrary e v e n  number of kl-gons, an arbitrary even 
number of k2-gons, etc. We shall use this construction only for k = 7, 8, 9, 10, 11. 

Another change of a local character may be performed at each of the "plugs" 
introduced in (3). Indeed, considering one of them (Figure 4) together with the 
two hexagons adjacent to it (which arose from two pentagons in the rim of the 
caterpillar) we obtain the configuration of Figure 6, consisting of five pentagons 
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Fig. 5a, b 
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Fig. 6 

and three hexagons. Modifying it in the ways indicated in Figure 7, we obtain 
configurations each of which consists, besides pentagons, of at most 3 hexagons and 

either one heptagon, 
or one octagon, 

or one n-gon and one m-gon, where 7 < n < rn < 11 and (n, m) ~ (7, 11). 
Any of  the procedures listed in (4) will be referred to as "local insertions". 

Now we are ready to indicate the constructions needed to prove Theorem 2. 
Given the numbers Ps, P7, P8, "", we will have the "general case" provided 
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or (iii) 
k~12 

or (iv) E 
k~12 

or (v) ]~ 
k>=12 

EBERHARD'S THEOREM ON CONVEX POLYTOPES 

Pk = 2, P9 + Plo + PH is even and positive; 

405 

Pk = 2, P9 + Plo + Pll is odd, and P7 + Ps > 1; 

Pk = 2, P9 + Plo + PH is odd and > 3, Pit  > 1, andp7=  ps=0 .  

An easy check reveals that in each subcase of the "general case" we may find 
polygons to form a caterpillar in which all chains of  consecutive pentagons have 
length at least 5, all the polygons with at least 12 edges are in the caterpillar, as are 
(in some of the cases) some of the polygons with 7, 8, 9, 10, or 11 edges, while 
the remaining polygons with 7, 8, 9, 10, or 11 edges may be accomodated by local 
insertions. The only point that remains to be checked is the 3-connectedness of 
the resulting graph. However, if the "welding" of the caterpillar's rim is performed 
in such a fashion that at least one pair of pentagons adjacent to the two end- 
polygons of the caterpillar are brought together (as is shown in the example in 
Figure 3b), then the resulting graph is easily seen to be 3-connected, and the local 
insertions will not spoil its 3-connectedness. Since the two end-polygons of the 
caterpillar are at least heptagons, there are at least 10 different, consecutive ways 
of pinching which are satisfactory from the point of view of connectedness, as 
remarked earlier, we know that out of any five consecutive ways of "pinching" 
at least one is satisfactory from the point of view of having pentagons at the proper 
places. This completes the proof of Theorem 2 in the "general case". 

We still have to construct the graphs in the following special cases: 

(i) ~ p~ = 2, P9 + Plo is odd, and P7 = P8 = Ptl = 0; 
k~12 

(ii) X, Pk = 2 Pll  = 1, P7 = PS = P9 = P10 = 0; 
k~12 

(iii) ~ Pk = 2, P9 = Plo = Pll = 0, 
k~_12 

(iv) E pk ---- 1. 
k_~12 

In case (i), using the local insertions we see that it is enough to consider the case 
in which p9 + P~o = 1. We shall in this case construct a "caterpillar" with only 
3 polygons (having respectively nl > 12, n2 = 9 or 10, and n a > 12) in its "body"  
(see Figures 8a and 8b). This caterpillar will be pinched in such a manner that 
either the pentagons a, a, or else the pentagons b, b, become adjacent and be 
transformed into hexagons. Due to the special position of the two hexagons 
present, at least one of those ways of pinching is permissible, and the resulting 
graph is 3-connected. This completes the proof in the special case (i). 

The case (ii) is dealt with by a similar construction (see Figure 8c). 
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Fig. 8a, 8b, Be. 

In case (iii), let the two polygons with at least 12 sides have, respectively, n~ 
and n2 edges. We construct a caterpillar with just these two polygons (see Figure 9) 
and pinch it in such a fashion that either the pentagons a, a, or else the pentagons 
b, b, become adjacent and are transformed into hexagons. At least one of  those 
two ways of pinching is permissible, and the resulting graph is 3-connected. The 
possibly still missing heptagons and octagons may now be taken care of by local 
insertions. 

We note that the same procedure may be applied whenever n i + n2 >-16; 
hence the following subcases of case (iv) are also disposed of by this construction: 

Pk = 1 and P9 + P l o  + Pll is odd; 
k~_12 

Pk = 1, P9 + Plo + Pll is even, and P7 -I- Ps > 1; 
k~12 

Pk = O, P9 + P~o + Pt~ is even and positive: 
k ~ 2  

~' Pk = O, P9 + Plo + P t t  is odd, and P7 + Ps ~- 1; 
k~12 

~ Pk = 0, p s > 2 ;  
k~_9 
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Thus the only remaining cases are: 

(a) E Pk = 1, P9 + Pl0 + Pll is even, and P7 = P8 = 0; 
k_~12 

(b) ~ Pk = O, p g + P l o + P l l = I ,  pT=ps=O;  
k>_-12 

(c) E pk = O, p s = l ;  

(d) E Pk = 0, p T > l .  
k>8 

(Obviously, if E g_>7 Pk = 0 then Ps = 12 and G may be taken as the graph of 
the dodecahedron.) 

For subcase (a) we note that (see Figure 10) the only n-gon present (n > 12) 
may be surrounded by pentagons and serve as a caterpillar, the possibly present 
9-, 10-, or 11-gons being accomodated by local insertions. 

In subcase (b) we use one of the graphs in Figure 11. 
For subcase (c) we take the graph of Figure 12a if P7 is even, and the graph of 

Figure 12b if P7 is odd, additional pairs of heptagons may be incorporated by 
local insertions. 

Fig. 9 

Finally, in subcase (d) we take one of the graphs of Figure 13, and add pairs of 
heptagons as needed. 

This completes the proof of the Theorem 2. 

3. Proof of Theorem 1. We shall only sketch the proof of Theorem 1, leaving 
out the details of checking special cases. We first construct a graph G satisfying 
Theorem 2. The main step then consists in using the "local insertions" shown in 
Figures 14 and 15. The first adds one hexagon, while the second adds two or four 
hexagons, and replicates the starting configuration of six hexagons (shaded in 
Figure 15c). The few special cases in which the necessary starting configurations 
are absent must--and easily may--be treated separately. 
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Fig. 10 

Fig. 11 

Fig. 12a, b 

Fig. 13 

This completes the sketch of the proof of Theorem 1. 

4. Remarks. (i) The number 8 appearing in Theorems I and 2 is probably the best 
possible, However, the only case investigated in which even a determined effort 
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to find a polytope with less than 8 hexagons failed is that in which Pl 1 = 1, P5 
= 17, and Pk = 0 for k # 5,6, 11. Unfortunately, even in this case the need for at 
least 8 hexagons has not been definitively established. 

ii) As indicated in the Introduction, Theorem 1 does not generalize to sequences 
in which Pa and P4 may be different from 0. However, as a generalization of  
Theorem 2 we venture the following 

Conjecture 1. There exist constants a and b such that for any sequence 
Pa, P4, Ps, PT, "", Pn of non-negative integers satisfying Euler's relation (*) there 
exists a simple 3-polytope P such that pk(P)= Pk for k # 6, and 

P6(P) < a(Pa + P4) -[- b. 

The correct value of  a is probably a = 3. 
It is easy to show that if any estimate of  the form indicated in the conjecture 

exists, it has to satisfy a >_- 1/2. 

There are some indications that a weakened form of Theorem 1 remains valid 
for more general sequences. We formulate it as 

Conjecture 2. Given a sequence Pa, Pg, Ps,PT,'",Pn of  nonnegative integers 
satisfying Euler's relation (*), there exists a constant c such that either for each 
even, or else for each odd, P6 with P6 > c, there exists a simple 3-polytope P 

satisfying pk(P)= Pk for all k >  3. 

Fig. 14 

\ 

Fig. 15a, b, e 
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(iii) By a slight modification of the construction used in the proof of Theorem 2 
we may establish 

THEOREM 3. Given non-negative integers Ps, P6, P7, " ' ,  Pn satisfying 
]~k~_s (6--k)(pk = O, and P6 > 12, there exists a 3-valent, 3-connected graph 
G imbedded in the torus such that pk(G) = Pk for all k > 5. 

The main change consists in omitting the insertion of the two "plugs" after 
welding the caterpillar's rim, replacing two of the caterpillar's pentagons by 
hexagons, and identifying the boundaries of the two holes. The changes and 
identifications are shown in Figure 17 for the caterpillar of Figures 2 and 3. 
Detailed consideration of the special cases leads to the constant 12 of Theorem 3. 
(We were not able to prove that 12 pentagons are indeed necessary for some 
sequence Ps ," ' ,  P,). 

k 

i 

Fig. 17 

Theorem 3 may probably be generalized in the following fashion: 
Conjecture 3. If S is a surface of genus g, there exists a constant Cg such that 

for each sequence Ps, P6, P7, "", Pn of non-negative integers satisfying ~]k > 5(6- k)Pk 
= 2(1-g)  and P6 >-- ce, there exists a 3-valent, 3-connected graph imbedded in S 
such that pk(G) = Pk for all k > 5. 

(iv) Using Theorem 13.2.5 of [5] instead of Steinitz's theorem, another easy 
modification of the method used here yields: 

THEOREM 4. Given non-negative even integers Ps,P6,P7,'",Pn satisfying 
equation (**) and P6 >= 4, there exists a simple, centrally symmetric 3-polytope 

P such that pk(P)= Pk for all k > 5. 
We also venture 
Conjecture 4. There exist constants a and b such that given non-negative even 

integers P3, P4, "", P, satisfying Euler's relation (*) and P6 >= a(Pa + P4) + b, there 
exists a centrally symmetric simple 3-polytope P satisfying pk(P) = Pk for all k > 3. 

(v) As is well known there are 19 solutions with p~ = 0 for i > 7 of Euler's 
equation (*). It was known already to Eberhard [4] that some of them require 
p~ > 0 in order to correspond to a simple 3-polytope. Recently, efforts have made 
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to determine,  for  each o f  the nineteen solut ions,  the precise set o f  values o f  P6 

possible  in a s imple 3-polytope.  Table  1 gives the compos i t e  o f  those efforts. 

I t  is ma in ly  based  on results in [6],  [-5, Chap te r  13], [7] ,  and  a pr ivate  communica -  

t ion (December  1967) to the au thor  by E. Jucovi6 (the entries marked  (J) in 

Table  1 are due to JucoviO.  Malkev i t ch  [-7] considered all  the 19 cases and  es- 

tab l i shed  in each case the admiss ib i l i ty  of  all the relevant  values o f  P6 which are 

TABLE 1 

Excluded values of 
P3 P4 P5 P6 Remarks 

1 4 0 0 2, all odd 
2 3 1 1 1, all even 
3 3 0 3 0,2,4 
4 2 3 0 1,3,7 
5 2 2 2 (J) 
6 2 1 4 0 
7 2 0 6 1 (J) 
8 1 4 1 0,1 
9 I 3 3 (J) 

10 1 2 5 0 (J) 
11 1 1 7 0,1 (J) 
12 1 0 9 0,1,2,4 
13 0 6 0 1 
14 0 5 2 I (J) 
15 0 4 4 O) 
16 0 3 6 (J) 
17 0 2 8 (J) 
18 0 1 10 0,1 
19 0 0 12 I 

greater  than  some b o u n d  (such as 6 in case 3, 15 in case 4, etc.) The cases n o t  

covered by ei ther  Jucovi6 or  Malkevi tch  were checked with  the help  o f  Brf ickner ' s  

[3]  tables,  or  sett led by  ad  hoc arguments .  (*In case P3 = 2, P4 = 3, P6 = 15, 

Pk = 0 for  k # 3 ,4 ,6 ,  an example  was k ind ly  communica t ed  to the au thor  by  

J. Malkevi tch.)  
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